Polarization
From Academic Kids

This article treats polarization in electrodynamics. Other articles treat polarization in electrostatics, polarization in complex manifolds, polarization in politics and polarization in psychology.
In electrodynamics, polarization is a property of waves, such as light and other electromagnetic radiation. Unlike more familiar wave phenomena such as waves on water or sound waves, electromagnetic waves are threedimensional, and it is their vector nature that gives rise to the phenomenon of polarization.
Contents 
Theory
Basics: plane waves
The simplest manifestation of polarization to visualize is that of a plane wave, which is a good approximation to most light waves. A plane wave is one where the direction of the magnetic and electric fields are confined to a plane perpendicular to the propagation direction. Simply because the plane is twodimensional, the electric vector in the plane at a point in space can be decomposed into two orthogonal components. Call these the x and y components (following the conventions of analytic geometry). For a simple harmonic wave, where the amplitude of the electric vector varies in a sinusoidal manner, the two components have exactly the same frequency. However, these components have two other defining characteristics that can differ. First, the two components may not have the same amplitude. Second, the two components may not have the same phase, that is they may not reach their maxima and minima at the same time in the fixed plane we are talking about. By considering the shape traced out in a fixed plane by the electric vector as such a plane wave passes over it (a Lissajous figure), we obtain a description of the polarization state. The following figures show some examples of the evolution of the electric field vector (blue) with time, along with its x and y components (red/left and green/right) and the path made by the vector in the plane (purple):
Consider first the special case (left) where the two orthogonal components are in phase. In this case the strength of the two components are always equal or related by a constant ratio, so the direction of the electric vector (the vector sum of these two components) will always fall on a single line in the plane. We call this special case linear polarization. The direction of this line will depend on the relative amplitude of the two components. This direction can be in any angle in the plane, but the direction never varies.
Now consider another special case (center), where the two orthogonal components have exactly the same amplitude and are exactly ninety degrees out of phase. In this case one component is zero when the other component is at maximum or minimum amplitude. Notice that there are two possible phase relationships that satisfy this requirement. The x component can be ninety degrees ahead of the y component or it can be ninety degrees behind the y component. In this special case the electric vector in the plane formed by summing the two components will rotate in a circle. We call this special case circular polarization. The direction of rotation will depend on which of the two phase relationships exists. We call these cases righthand circular polarization and lefthand circular polarization, depending on which way the electric vector rotates.
All the other cases, that is where the two components are not in phase and either do not have the same amplitude and/or are not ninety degrees out of phase (e.g. right) are called elliptical polarization because the sum electric vector in the plane will trace out an ellipse (the "polarization ellipse").
Polarizer_comparison.jpg
Incoherent radiation
In nature, electromagnetic radiation is often produced by a large ensemble of individual radiators, producing waves independently of each other. This type of light is termed incoherent. In general there is no single frequency but rather a spectrum of different frequencies present, and even if filtered to an arbitrarily narrow frequency range, there may not be a consistent state of polarization. However, this does not mean that polarization is only a feature of coherent radiation. Incoherent radiation may show statistical correlation between the components of the electric field, which can be interpreted as partial polarization. In general it is possible to describe an observed wave field as the sum of a completely incoherent part (no correlations) and a completely polarized part. One may then describe the light in terms of the degree of polarization, and the parameters of the polarization ellipse.
Propagation, reflection and scattering
In a vacuum, the components of the electric field propagate at the speed of light, so that the phase of the wave varies in space in time while the polarization state does not. That is:
 <math> \mathbf{e}(z+\Delta z,t+\Delta t) = \mathbf{e}(z, t) e^{i k (c\Delta t  \Delta z)},<math>
where k is the wavenumber and positive z is the direction of propagation. As noted above, the physical electric vector is the real part of the Jones vector. When electromagnetic waves interact with matter, their propagation is altered. If this depends on the polarization states of the waves, then their polarization may also be altered.
In many types of media, electromagnetic waves are decomposed into two orthogonal components that encounter different propagation effects. A similar situation occurs in the signal processing paths of detection systems that record the electric field directly. Such effects are most easily characterized in the form of a complex 2×2 transformation matrix called the Jones matrix:
 <math>\mathbf{e'} = \mathbf{J}\mathbf{e}.<math>
In general the Jones matrix of a medium depends on the frequency of the waves.
For propagation effects in two orthogonal modes, the Jones matrix can be written as:
 <math>\mathbf{J} = \mathbf{T}
\begin{bmatrix} g_1 & 0 \\ 0 & g_2 \end{bmatrix} \mathbf{T}^{1},<math>
where g_{1} and g_{2} are complex numbers representing the change in amplitude and phase caused in each of the two propagation modes, and T is a unitary matrix representing a change of basis from these propagation modes to the linear system used for the Jones vectors. For those media in which the amplitudes are unchanged but a differential phase delay occurs, the Jones matrix is unitary, while those affecting amplitude without phase have Hermitian Jones matrices. In fact, since any matrix may be written as the product of unitary and positive Hermitian matrices, any sequence of linear propagation effects, no matter how complex, can be written as the a product of these two basic types of transformations.
Birefringence.png
Birefringence diagram
Media in which the two modes accrue a differential delay are called birefringent. Well known manifestations of this effect appear in optical wave plates/retarders (linear modes) and in Faraday rotation/optical rotation (circular modes). An easily visualized example is one where the propagation modes are linear, and the incoming radiation is linearly polarized at a 45° angle to the modes. As the phase difference starts to appear, the polarization becomes elliptical, eventually changing to purely circular polarization (90° phase difference), then to elliptical and eventually linear polarization (180° phase) with an azimuth angle perpendicular to the original direction, then through circular again (270° phase), then elliptical with the original azimuth angle, and finally back to the original linearly polarized state (360° phase) where the cycle begins anew. In general the situation is more complicated and can be characterized as a rotation in the Poincaré sphere about the axis defined by the propagation modes (this is a consequence of the isomorphism of SU(2) with SO(3)). Examples for linear (blue), circular (red) and elliptical (yellow) birefringence are shown in the figure on the left. The total intensity and degree of polarization are unaffected. If the path length in the birefringent medium is sufficient, plane waves will exit the material with a significantly different propagation direction, due to refraction. For example, this is the case with macroscopic crystals of calcite, which present the viewer with two offset, orthogonally polarized images of whatever is viewed through them. It was this effect that provided the first discovery of polarization, by Erasmus Bartholinus in 1669. In addition, the phase shift, and thus the change in polarization state, is usually frequency dependent, which, in combination with dichroism, often gives rise to bright colors and rainbowlike effects.
Media in which the amplitude of waves propagating in one of the modes is reduced are called dichroic. Devices that block nearly all of the radiation in one mode are known as polarizing filters or simply "polarizers". In terms of the Stokes parameters, the total intensity is reduced while vectors in the Poincaré sphere are "dragged" towards the direction of the favored mode. Mathematically, under the treatment of the Stokes parameters as a Minkowski 4vector, the transformation is a scaled Lorentz boost (due to the isomorphism of SL(2,C) and the restricted Lorentz group, SO(3,1)). Just as the Lorentz transformation preserves the proper time, the quantity det Ψ = S_{0}^{2}S_{1}^{2}S_{2}^{2}S_{3}^{2} is invariant within a multiplicative scalar constant under Jones matrix transformations (dichroic and/or birefringent).
In birefringent and dichroic media, in addition to writing a Jones matrix for the net effect of passing through a particular path in a given medium, the evolution of the polarization state along that path can be characterized as the (matrix) product of an infinite series of infinitesimal steps, each operating on the state produced by all earlier matrices. In a uniform medium each step is the same, and one may write
 <math>\mathbf{J} = Je^{\mathbf{D}},<math>
where J is an overall (real) gain/loss factor. Here D is a traceless matrix such that αDe gives the derivative of e with respect to z. If D is Hermitian the effect is dichroism, while a unitary matrix models birefringence. The matrix D can be expressed as a linear combination of the Pauli matrices, where real coefficients give Hermitian matrices and imaginary coefficients give unitary matrices. The Jones matrix in each case may therefore be written with the convenient construction:
 <math>\begin{matrix}
\mathbf{J_b} &=& J_be^{\beta \mathbf{\sigma}\cdot\mathbf{\hat{n}}} \\ \\ \mathbf{J_r} &=& J_re^{\phi i\mathbf{\sigma}\cdot\mathbf{\hat{m}}}, \end{matrix}<math>
where σ is a 3vector composed of the Pauli matrices (used here as generators for the Lie group SL(2,C)) and n and m are real 3vectors on the Poincaré sphere corresponding to one of the propagation modes of the medium. The effects in that space correspond to a Lorentz boost of velocity parameter 2β along the given direction, or a rotation of angle 2φ about the given axis. These transformations may also be written as biquaternions (quaternions with complex elements), where the elements are related to the Jones matrix in the same way that the Stokes parameters are related to the coherency matrix. They may then be applied in pre and postmultiplication to the quaternion representation of the coherency matrix, with the usual exploitation of the quaternion exponential for performing rotations and boosts taking a form equivalent to the matrix exponential equations above (See: Quaternion rotation).
In addition to birefringence and dichroism in extended media, polarization effects describable using Jones matrices can also occur at (reflective) interface between two materials of different refractive index. These effects are treated by the Fresnel equations. Part of the wave is transmitted and part is reflected, with the ratio depending on angle of incidence and the angle of refraction. In addition, if the plane of the reflecting surface is not aligned with the plane of propagation of the wave, the polarization of the two parts is altered. In general, the Jones matrices of the reflection and transmission are real and diagonal, making the effect similar to that of a simple linear polarizer. For unpolarized light striking a surface at a certain optimum angle of incidence known as Brewster's angle, the reflected wave will be completely spolarized.
Certain effects do not produce linear transformations of the Jones vector, and thus cannot be described with (constant) Jones matrices. For these cases it is usual instead to use a 4×4 matrix that acts upon the Stokes 4vector. Such matrices were first used by Paul Soleillet in 1929, although they have come to be known as Mueller matrices. While every Jones matrix has a Mueller matrix, the reverse is not true. Mueller matrices are frequently used to study the effects of the scattering of waves from complex surfaces or ensembles of particles.
Polarization in nature, science, and technology
Observing polarization effects in everyday life
All light which reflects off a flat surface is at least partially polarized. You can take a polarizing filter and hold it at 90 degrees to the reflection, and it will be reduced or eliminated. Polarizing filters remove light polarized at 90 degrees to the filter. This is why you can take 2 polarizers and lay them atop one another at 90 degree angles to each other and no light will pass through.
Polarized light can be observed all around you if you know what it is and what to look for. (the lenses of Polaroid sunglasses will work to demonstrate). While viewing through the filter, rotate it, and if linear or elliptically polarized light is present the degree of illumination will change. Polarization by scattering is observed as light passes through our atmosphere. The scattered light often produces a glare in the skies. Photographers know that this partial polarization of scattered light produces a washedout sky. An easy first phenomenon to observe is at sunset to view the horizon at a 90° angle from the sunset. Another easily observed effect is the drastic reduction in brightness of images of the sky and clouds reflected from horizontal surfaces, which is the reason why polarizing filters are often used in sunglasses. Also frequently visible through polarizing sunglasses are rainbowlike patterns caused by colordependent birefringent effects, for example in toughened glass (e.g. car windows) or items made from transparent plastics. The role played by polarization in the operation of liquid crystal displays (LCDs) is also frequently apparent to the wearer of polarizing sunglasses, which may reduce the contrast or even make the display unreadable.
In fact, the naked human eye is weakly sensitive to polarization, without the need for intervening filters. See: Haidinger's brush.
Biology
Many animals are apparently capable of perceiving the polarization of light, which is generally used for navigational purposes, since the linear polarization of sky light is always perpendicular to the direction of the sun. This ability is very common among the insects, including bees, which use this information to orient their communicative dances. Polarization sensitivity has also been observed in species of octopus, squid, cuttlefish, and mantis shrimp. The rapidly changing, vividly colored skin patterns of cuttlefish, used for communication, also incorporate polarization patterns, and mantis shrimp are known to have polarization selective reflective tissue. Sky polarization can also be perceived by some vertebrates, including pigeons, for which the ability is but one of many aids to homing.
Geology
The property of (linear) birefringence is widespread in crystalline minerals, and indeed was pivotal in the initial discovery of polarization. In mineralogy, this property is frequently exploited using polarization microscopes, for the purpose of identifying minerals. See pleochroism.
Chemistry
Polarization is principally of importance in chemistry due to the circular dichroism and "optical rotation" (circular birefringence) exhibited by optically active (chiral) molecules. It may be measured using a polarimeter.
Astronomy
See: Polarization in astronomy
In many areas of astronomy, the study of polarized electromagnetic radiation from outer space is of great importance. Although not usually a factor in the thermal radiation of stars, polarization is also present in radiation from coherent astronomical sources (e.g. hydroxyl or methanol masers), and incoherent sources such as the large radio lobes in active galaxies, and pulsar radio radiation (which may, it is speculated, sometimes be coherent), and is also imposed upon starlight by scattering from interstellar dust. Apart from providing information on sources of radiation and scattering, polarization also probes the interstellar magnetic field via Faraday rotation. The polarization of the cosmic microwave background is being used to study the physics of the very early universe. Synchrotron radiation is highly polarised.
Technology
Technological applications of polarization are extremely widespread. Perhaps the most commonly encountered example is the liquid crystal display. All radio transmitters and receivers are intrinsically polarized, special use of which is made in radar. In engineering, the relationship between strain and birefringence motivates the use of polarization in characterizing the distribution of stress and strain in prototypes. Electronically controlled birefringent devices are used in combination with polarizing filters as modulators in fiber optics. Polarizing filters are also used in photography. They can deepen the color of a blue sky and eliminate reflections from windows and standing water.
Sky polarization has been exploited in the "sky compass", which was used in the 1950s when navigating near the poles of the Earth's magnetic field when neither the sun nor stars were visible (e.g. under daytime cloud or twilight). It has been suggested, controversially, that the Vikings exploited a similar device (the "sunstone") in their extensive expeditions across the North Atlantic in the 9th  11th centuries, before the arrival of the magnetic compass in Europe in the 12th century. Related to the sky compass is the "polar clock", invented by Charles Wheatstone in the late 19th century.
References
 Principles of Optics, M. Born & E. Wolf, Cambridge University Press, 7th edition 1999, ISBN 0521642221
 Fundamentals of polarized light : a statistical optics approach, C. Brosseau, Wiley, 1998, ISBN 0471143022
 Polarized Light, Production and Use, William A. Shurcliff, Harvard University Press, 1962.
 Optics, Eugene Hecht, Addison Wesley, 4th edition 2002, hardcover, ISBN 0805385665
 Polarised Light in Science and Nature, D. Pye, Institute of Physics Publishing, 2001, ISBN 0750306734
 Polarized Light in Nature, G. P. Können, Translated by G. A. Beerling, Cambridge University Press, 1985, hardcover, ISBN 0521258626
See also
External links
 polarization.com (http://www.polarization.com/): Polarized Light in Nature and Technology
 Polarized Light Digital Image Gallery (http://micro.magnet.fsu.edu/primer/techniques/polarized/gallery/index.html): Microscopic images made using polarization effects
 Polarization by the University of Colorado Physics 2000 (http://www.colorado.edu/physics/2000/polarization/index.html): Animated explanation of polarization
 The relationship between photon spin and polarization (http://www.mathpages.com/rr/s904/904.htm)
 A virtual polarization microscope (http://gerdbreitenbach.de/crystal/crystal.html)cs:Polarizace (elektrodynamika)
da:Optisk polarisering de:Polarisation fr:Polarisation it:Polarizzazione nl:Polarisatie (natuurkunde) ja:偏光 pl:Polaryzacja pt:Polarizao ru:Поляризация