Quantum state

From Academic Kids

A quantum state is any possible state in which a quantum mechanical system can be. A fully specified quantum state can be described by a state vector, a wavefunction, or a complete set of quantum numbers for a specific system. A partially known quantum state, such as a ensemble with some quantum numbers fixed, can be described by a density operator.

Contents

Bra-ket notation

Paul Dirac invented a powerful and intuitive mathematical notation to describe quantum states, known as bra-ket notation. For instance, one can refer to an |excited atom> or to <math>|\!\!\uparrow\rangle<math> for a spin-up particle, hiding the underlying complexity of the mathematical description, which is revealed when the state is projected onto a coordinate basis. For instance, the simple notation |1s> describes the first hydrogen atom bound state, but becomes a complicated function in terms of Laguerre polynomials and spherical harmonics when projected onto the basis of position vectors |r>. The resulting expression Ψ(r)=<r|1s>, which is known as the wavefunction, is a special representation of the quantum state, namely, its projection into position space. Other representations, like the projection into momentum space, are possible. The various representations are simply different expressions of a single physical quantum state.

Basis states

Any quantum state <math>|\psi\rangle<math> can be expressed in terms of a sum of basis states (also called basis kets), <math>|k_i\rangle<math>

<math>| \psi \rangle = \sum_i c_i | k_i \rangle<math>

where <math>c_i<math> are the coefficients representing the probability amplitude, such that the absolute square of the probability amplitude, <math>\left | c_i \right | ^2<math> is the probability of a measurement in terms of the basis states yielding the state <math>|k_i\rangle<math>. The normalization condition mandates that the total sum of probabilities is equal to one,

<math>\sum_i \left | c_i \right | ^2 = 1<math>.

The simplest understanding of basis states is obtained by examining the quantum harmonic oscillator. In this system, each basis state <math>|n\rangle<math> has an energy <math> E_n = \hbar \omega \left(n + {\begin{matrix}\frac{1}{2}\end{matrix}}\right)<math>. The set of basis states can be extracted using a construction operator <math>a^{\dagger}<math> and a destruction operator <math>a<math> in what is called the ladder operator method.

Superposition of states

If a quantum mechanical state <math>|\psi\rangle<math> can be reached by more than one path, then <math>|\psi\rangle<math> is said to be a linear superposition of states. In the case of two paths, if the states after passing through path <math>\alpha<math> and path <math>\beta<math> are

<math>|\alpha\rangle = \begin{matrix}\frac{1}{\sqrt{2}}\end{matrix} |0\rangle + \begin{matrix}\frac{1}{\sqrt{2}}\end{matrix} |1\rangle<math>, and

<math>|\beta\rangle = \begin{matrix}\frac{1}{\sqrt{2}}\end{matrix} |0\rangle - \begin{matrix}\frac{1}{\sqrt{2}}\end{matrix} |1\rangle<math>,

then <math>|\psi\rangle<math> is defined as the normalized linear sum of these two states. If the two paths are equally likely, this yields

<math>|\psi\rangle = \begin{matrix}\frac{1}{\sqrt{2}}\end{matrix}|\alpha\rangle + \begin{matrix}\frac{1}{\sqrt{2}}\end{matrix}|\beta\rangle = \begin{matrix}\frac{1}{\sqrt{2}}\end{matrix}(\begin{matrix}\frac{1}{\sqrt{2}}\end{matrix}|0\rangle + \begin{matrix}\frac{1}{\sqrt{2}}\end{matrix}|1\rangle) + \begin{matrix}\frac{1}{\sqrt{2}}\end{matrix}(\begin{matrix}\frac{1}{\sqrt{2}}\end{matrix}|0\rangle - \begin{matrix}\frac{1}{\sqrt{2}}\end{matrix}|1\rangle) = |0\rangle<math>.

Note that in the states <math>|\alpha\rangle<math> and <math>|\beta\rangle<math>, the two states <math>|0\rangle<math> and <math>|1\rangle<math> each have a probability of <math>\begin{matrix}\frac{1}{2}\end{matrix}<math>, as obtained by the absolute square of the probability amplitudes, which are <math>\begin{matrix}\frac{1}{\sqrt{2}}\end{matrix}<math> and <math>\begin{matrix}\pm\frac{1}{\sqrt{2}}\end{matrix}<math>. In a superposition, it is the probability amplitudes which add, and not the probabilities themselves. The pattern which results from a superposition is often called an interference pattern. In the above case, <math>|0\rangle<math> is said to constructively interfere, and <math>|1\rangle<math> is said to destructively interfere.

For more about superposition of states, see the double-slit experiment.

Pure and mixed states

A pure quantum state is a state which can be described by a single ket vector, or as a sum of basis states. A mixed quantum state is a statistical distribution of pure states.

The expectation value <math>\langle a \rangle<math> of a measurement <math>A<math> on a pure quantum state is given by

<math>\langle a \rangle = \langle \psi | A | \psi \rangle = \sum_i a_i \langle \psi | \alpha_i \rangle \langle \alpha_i | \psi \rangle = \sum_i a_i | \langle \alpha_i | \psi \rangle |^2 = \sum_i a_i P(\alpha_i)<math>

where <math>|\alpha_i\rangle<math> are basis kets for the operator <math>A<math>, and <math>P(\alpha_i)<math> is the probability of <math>| \psi \rangle<math> being measured in state <math>|\alpha_i\rangle<math>.

In order to describe a statistical distribution of pure states, or mixed state, the density operator (or density matrix), <math>\rho<math>, is used. This extends quantum mechanics to quantum statistical mechanics. The density operator is defined as

<math>\rho = \sum_s p_s | \psi_s \rangle \langle \psi_s |<math>

where <math>p_s<math> is the fraction of each ensemble in pure state <math>|\psi_s\rangle<math>. The ensemble average of a measurement <math>A<math> on a mixed state is given by

<math>\left [ A \right ] = \langle \overline{A} \rangle = \sum_s p_s \langle \psi_s | A | \psi_s \rangle = \sum_s \sum_i p_s a_i | \langle \alpha_i | \psi_s \rangle |^2 = tr(\rho A)<math>

where it is important to note that two types of averaging are occurring, one being a quantum average over the basis kets of the pure states, and the other being a statistical average over the ensemble of pure states.

See also

el:Κβαντική κατάσταση pl:Stan kwantowy

Navigation

Academic Kids Menu

  • Art and Cultures
    • Art (http://www.academickids.com/encyclopedia/index.php/Art)
    • Architecture (http://www.academickids.com/encyclopedia/index.php/Architecture)
    • Cultures (http://www.academickids.com/encyclopedia/index.php/Cultures)
    • Music (http://www.academickids.com/encyclopedia/index.php/Music)
    • Musical Instruments (http://academickids.com/encyclopedia/index.php/List_of_musical_instruments)
  • Biographies (http://www.academickids.com/encyclopedia/index.php/Biographies)
  • Clipart (http://www.academickids.com/encyclopedia/index.php/Clipart)
  • Geography (http://www.academickids.com/encyclopedia/index.php/Geography)
    • Countries of the World (http://www.academickids.com/encyclopedia/index.php/Countries)
    • Maps (http://www.academickids.com/encyclopedia/index.php/Maps)
    • Flags (http://www.academickids.com/encyclopedia/index.php/Flags)
    • Continents (http://www.academickids.com/encyclopedia/index.php/Continents)
  • History (http://www.academickids.com/encyclopedia/index.php/History)
    • Ancient Civilizations (http://www.academickids.com/encyclopedia/index.php/Ancient_Civilizations)
    • Industrial Revolution (http://www.academickids.com/encyclopedia/index.php/Industrial_Revolution)
    • Middle Ages (http://www.academickids.com/encyclopedia/index.php/Middle_Ages)
    • Prehistory (http://www.academickids.com/encyclopedia/index.php/Prehistory)
    • Renaissance (http://www.academickids.com/encyclopedia/index.php/Renaissance)
    • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
    • United States (http://www.academickids.com/encyclopedia/index.php/United_States)
    • Wars (http://www.academickids.com/encyclopedia/index.php/Wars)
    • World History (http://www.academickids.com/encyclopedia/index.php/History_of_the_world)
  • Human Body (http://www.academickids.com/encyclopedia/index.php/Human_Body)
  • Mathematics (http://www.academickids.com/encyclopedia/index.php/Mathematics)
  • Reference (http://www.academickids.com/encyclopedia/index.php/Reference)
  • Science (http://www.academickids.com/encyclopedia/index.php/Science)
    • Animals (http://www.academickids.com/encyclopedia/index.php/Animals)
    • Aviation (http://www.academickids.com/encyclopedia/index.php/Aviation)
    • Dinosaurs (http://www.academickids.com/encyclopedia/index.php/Dinosaurs)
    • Earth (http://www.academickids.com/encyclopedia/index.php/Earth)
    • Inventions (http://www.academickids.com/encyclopedia/index.php/Inventions)
    • Physical Science (http://www.academickids.com/encyclopedia/index.php/Physical_Science)
    • Plants (http://www.academickids.com/encyclopedia/index.php/Plants)
    • Scientists (http://www.academickids.com/encyclopedia/index.php/Scientists)
  • Social Studies (http://www.academickids.com/encyclopedia/index.php/Social_Studies)
    • Anthropology (http://www.academickids.com/encyclopedia/index.php/Anthropology)
    • Economics (http://www.academickids.com/encyclopedia/index.php/Economics)
    • Government (http://www.academickids.com/encyclopedia/index.php/Government)
    • Religion (http://www.academickids.com/encyclopedia/index.php/Religion)
    • Holidays (http://www.academickids.com/encyclopedia/index.php/Holidays)
  • Space and Astronomy
    • Solar System (http://www.academickids.com/encyclopedia/index.php/Solar_System)
    • Planets (http://www.academickids.com/encyclopedia/index.php/Planets)
  • Sports (http://www.academickids.com/encyclopedia/index.php/Sports)
  • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
  • Weather (http://www.academickids.com/encyclopedia/index.php/Weather)
  • US States (http://www.academickids.com/encyclopedia/index.php/US_States)

Information

  • Home Page (http://academickids.com/encyclopedia/index.php)
  • Contact Us (http://www.academickids.com/encyclopedia/index.php/Contactus)

  • Clip Art (http://classroomclipart.com)
Toolbox
Personal tools