Metric tensor

From Academic Kids

(Redirected from Riemannian metric)

In mathematics, in Riemannian geometry, the metric tensor is a tensor of rank 2 that is used to measure distance and angle in a space.

Once a local coordinate system <math> x^i <math> is chosen, the metric tensor appears as a matrix, conventionally denoted G. The notation <math>g_{ij}<math> is conventionally used for the components of the metric tensor (i.e. the elements of the matrix). In the following, we use the Einstein notation for implicit sums.

The length of a segment of a curve parameterized by t, from a to b, is defined as:

<math>L = \int_a^b \sqrt{ g_{ij}{dx^i\over dt}{dx^j\over dt}}dt<math>

The angle <math> \theta <math> between two tangent vectors, <math>U=u^i{\partial\over \partial x_i}<math> and <math>V=v^i{\partial\over \partial x_i}<math>, is defined as:

<math>

\cos \theta = \frac{g_{ij}u^iv^j} {\sqrt{ \left| g_{ij}u^iu^j \right| \left| g_{ij}v^iv^j \right|}} <math>

The induced metric tensor for a smooth embedding of a manifold into Euclidean space can be computed by the formula

<math>G = J^T J<math>

where <math>J <math> denotes the Jacobian of the embedding and <math>J^T <math> its transpose.

Examples

The Euclidean metric

Given a two-dimensional Euclidean metric tensor:

<math>g = \begin{bmatrix} 1 & 0 \\ 0 & 1\end{bmatrix}<math>

The length of a curve reduces to the familiar calculus formula:

<math>L = \int_a^b \sqrt{ (dx^1)^2 + (dx^2)^2} <math>

The Euclidean metric in some other common coordinate systems can be written as follows.

Polar coordinates: <math>(x^1, x^2)=(r, \theta)<math>

<math>g = \begin{bmatrix} 1 & 0 \\ 0 & (x^1)^2\end{bmatrix}<math>

Cylindrical coordinates: <math>(x^1, x^2, x^3)=(r, \theta, z)<math>

<math>g = \begin{bmatrix} 1 & 0 & 0\\ 0 & (x^1)^2 & 0 \\ 0 & 0 & 1\end{bmatrix}<math>

Spherical coordinates: <math>(x^1, x^2, x^3)=(r, \phi, \theta)<math>

<math>g = \begin{bmatrix} 1 & 0 & 0\\ 0 & (x^1)^2 & 0 \\ 0 & 0 & (x^1\sin x^2)^2\end{bmatrix}<math>

Flat Minkowski space: <math>(x^0, x^1, x^2, x^3)=(t, x, y, z)<math>

<math>g = \begin{bmatrix} -1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{bmatrix}<math>

See also

es:Tensor mtrico fr:Tenseur mtrique nl:Metrische tensor pl:Tensor metryczny zh:度量张量

Navigation

Academic Kids Menu

  • Art and Cultures
    • Art (http://www.academickids.com/encyclopedia/index.php/Art)
    • Architecture (http://www.academickids.com/encyclopedia/index.php/Architecture)
    • Cultures (http://www.academickids.com/encyclopedia/index.php/Cultures)
    • Music (http://www.academickids.com/encyclopedia/index.php/Music)
    • Musical Instruments (http://academickids.com/encyclopedia/index.php/List_of_musical_instruments)
  • Biographies (http://www.academickids.com/encyclopedia/index.php/Biographies)
  • Clipart (http://www.academickids.com/encyclopedia/index.php/Clipart)
  • Geography (http://www.academickids.com/encyclopedia/index.php/Geography)
    • Countries of the World (http://www.academickids.com/encyclopedia/index.php/Countries)
    • Maps (http://www.academickids.com/encyclopedia/index.php/Maps)
    • Flags (http://www.academickids.com/encyclopedia/index.php/Flags)
    • Continents (http://www.academickids.com/encyclopedia/index.php/Continents)
  • History (http://www.academickids.com/encyclopedia/index.php/History)
    • Ancient Civilizations (http://www.academickids.com/encyclopedia/index.php/Ancient_Civilizations)
    • Industrial Revolution (http://www.academickids.com/encyclopedia/index.php/Industrial_Revolution)
    • Middle Ages (http://www.academickids.com/encyclopedia/index.php/Middle_Ages)
    • Prehistory (http://www.academickids.com/encyclopedia/index.php/Prehistory)
    • Renaissance (http://www.academickids.com/encyclopedia/index.php/Renaissance)
    • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
    • United States (http://www.academickids.com/encyclopedia/index.php/United_States)
    • Wars (http://www.academickids.com/encyclopedia/index.php/Wars)
    • World History (http://www.academickids.com/encyclopedia/index.php/History_of_the_world)
  • Human Body (http://www.academickids.com/encyclopedia/index.php/Human_Body)
  • Mathematics (http://www.academickids.com/encyclopedia/index.php/Mathematics)
  • Reference (http://www.academickids.com/encyclopedia/index.php/Reference)
  • Science (http://www.academickids.com/encyclopedia/index.php/Science)
    • Animals (http://www.academickids.com/encyclopedia/index.php/Animals)
    • Aviation (http://www.academickids.com/encyclopedia/index.php/Aviation)
    • Dinosaurs (http://www.academickids.com/encyclopedia/index.php/Dinosaurs)
    • Earth (http://www.academickids.com/encyclopedia/index.php/Earth)
    • Inventions (http://www.academickids.com/encyclopedia/index.php/Inventions)
    • Physical Science (http://www.academickids.com/encyclopedia/index.php/Physical_Science)
    • Plants (http://www.academickids.com/encyclopedia/index.php/Plants)
    • Scientists (http://www.academickids.com/encyclopedia/index.php/Scientists)
  • Social Studies (http://www.academickids.com/encyclopedia/index.php/Social_Studies)
    • Anthropology (http://www.academickids.com/encyclopedia/index.php/Anthropology)
    • Economics (http://www.academickids.com/encyclopedia/index.php/Economics)
    • Government (http://www.academickids.com/encyclopedia/index.php/Government)
    • Religion (http://www.academickids.com/encyclopedia/index.php/Religion)
    • Holidays (http://www.academickids.com/encyclopedia/index.php/Holidays)
  • Space and Astronomy
    • Solar System (http://www.academickids.com/encyclopedia/index.php/Solar_System)
    • Planets (http://www.academickids.com/encyclopedia/index.php/Planets)
  • Sports (http://www.academickids.com/encyclopedia/index.php/Sports)
  • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
  • Weather (http://www.academickids.com/encyclopedia/index.php/Weather)
  • US States (http://www.academickids.com/encyclopedia/index.php/US_States)

Information

  • Home Page (http://academickids.com/encyclopedia/index.php)
  • Contact Us (http://www.academickids.com/encyclopedia/index.php/Contactus)

  • Clip Art (http://classroomclipart.com)
Toolbox
Personal tools