# Cube root

In mathematics, the cube root (∛) of a number is a number which, when cubed (multiplied by itself and then multiplied by itself again), gives back the original number. For instance, the cube root of 8 is 2, because 2 × 2 × 2 = 8. This is written:

[itex]\sqrt[3]{8} = 2[itex]

Formally, the cube root of a real (or complex) number x is a real (correspondingly, complex) solution y to the equation:

y3 = x,

which leads to the equivalent notation for cube and other roots that

[itex]y = x^{1\over3}[itex]

The cube root operation is associative with exponentiation and distributive with multiplication and division, but not addition and subtraction.

A non-zero complex number has three cube roots. A real number has a unique real cube root, but when treated as a complex number it has two further cube roots, which are complex conjugates of each other.

For instance, the cube roots of unity (1) are

1, [itex]-1 + \sqrt{3}i\over2[itex] and [itex]-1 - \sqrt{3}i\over2[itex].

If R is one cube root of any real or complex number, the other two cube roots can be found by multiplying R by the two complex cube roots of unity.

When treated purely as a real function of a real variable, we may define a real cube root for all real numbers by setting

[itex](-x)^{1\over3} = -x^{1\over3}.[itex]

However for complex numbers we define instead the cube root to be

[itex]x^{1\over3} = \exp({\ln{x}\over3})[itex]

where ln(x) is the principal branch of the natural logarithm. If we write x as

[itex]x = r \exp(i \theta)[itex]

where r is a non-negative real number and θ lies in the range

[itex]-\pi < \theta \le \pi[itex],

then the complex cube root is

[itex]\sqrt[3]{x} = \sqrt[3]{r}\exp(i\theta/3).[itex]

This means that in polar coordinates, we are taking the cube root of the radius and dividing the polar angle by three in order to define a cube root. Hence, for instance, ∛−8 will not be −2, but rather 1 + i√3.

## External links

##### Navigation

Academic Kids Menu

• Art and Cultures
• Art (http://www.academickids.com/encyclopedia/index.php/Art)
• Architecture (http://www.academickids.com/encyclopedia/index.php/Architecture)
• Cultures (http://www.academickids.com/encyclopedia/index.php/Cultures)
• Music (http://www.academickids.com/encyclopedia/index.php/Music)
• Musical Instruments (http://academickids.com/encyclopedia/index.php/List_of_musical_instruments)
• Biographies (http://www.academickids.com/encyclopedia/index.php/Biographies)
• Clipart (http://www.academickids.com/encyclopedia/index.php/Clipart)
• Geography (http://www.academickids.com/encyclopedia/index.php/Geography)
• Countries of the World (http://www.academickids.com/encyclopedia/index.php/Countries)
• Maps (http://www.academickids.com/encyclopedia/index.php/Maps)
• Flags (http://www.academickids.com/encyclopedia/index.php/Flags)
• Continents (http://www.academickids.com/encyclopedia/index.php/Continents)
• History (http://www.academickids.com/encyclopedia/index.php/History)
• Ancient Civilizations (http://www.academickids.com/encyclopedia/index.php/Ancient_Civilizations)
• Industrial Revolution (http://www.academickids.com/encyclopedia/index.php/Industrial_Revolution)
• Middle Ages (http://www.academickids.com/encyclopedia/index.php/Middle_Ages)
• Prehistory (http://www.academickids.com/encyclopedia/index.php/Prehistory)
• Renaissance (http://www.academickids.com/encyclopedia/index.php/Renaissance)
• Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
• United States (http://www.academickids.com/encyclopedia/index.php/United_States)
• Wars (http://www.academickids.com/encyclopedia/index.php/Wars)
• World History (http://www.academickids.com/encyclopedia/index.php/History_of_the_world)
• Human Body (http://www.academickids.com/encyclopedia/index.php/Human_Body)
• Mathematics (http://www.academickids.com/encyclopedia/index.php/Mathematics)
• Reference (http://www.academickids.com/encyclopedia/index.php/Reference)
• Science (http://www.academickids.com/encyclopedia/index.php/Science)
• Animals (http://www.academickids.com/encyclopedia/index.php/Animals)
• Aviation (http://www.academickids.com/encyclopedia/index.php/Aviation)
• Dinosaurs (http://www.academickids.com/encyclopedia/index.php/Dinosaurs)
• Earth (http://www.academickids.com/encyclopedia/index.php/Earth)
• Inventions (http://www.academickids.com/encyclopedia/index.php/Inventions)
• Physical Science (http://www.academickids.com/encyclopedia/index.php/Physical_Science)
• Plants (http://www.academickids.com/encyclopedia/index.php/Plants)
• Scientists (http://www.academickids.com/encyclopedia/index.php/Scientists)
• Social Studies (http://www.academickids.com/encyclopedia/index.php/Social_Studies)
• Anthropology (http://www.academickids.com/encyclopedia/index.php/Anthropology)
• Economics (http://www.academickids.com/encyclopedia/index.php/Economics)
• Government (http://www.academickids.com/encyclopedia/index.php/Government)
• Religion (http://www.academickids.com/encyclopedia/index.php/Religion)
• Holidays (http://www.academickids.com/encyclopedia/index.php/Holidays)
• Space and Astronomy
• Solar System (http://www.academickids.com/encyclopedia/index.php/Solar_System)
• Planets (http://www.academickids.com/encyclopedia/index.php/Planets)
• Sports (http://www.academickids.com/encyclopedia/index.php/Sports)
• Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
• Weather (http://www.academickids.com/encyclopedia/index.php/Weather)
• US States (http://www.academickids.com/encyclopedia/index.php/US_States)

Information

• Home Page (http://academickids.com/encyclopedia/index.php)
• Contact Us (http://www.academickids.com/encyclopedia/index.php/Contactus)

• Clip Art (http://classroomclipart.com)