###
Escribir una carta persuasiva

This lesson was intended to be delivered in a face-to-face classroom environment. Due to the COVID-19 pandemic of 2020, this lesson has been modified from its original design to be executed in a virtual setting.

This virtual lesson was designed to prepare students to communicate familiar topics in the presentational writing mode in the target language. Students will act as a college advisor and respond to a prospective student’s email regarding housing options. Students will then peer evaluate each other’s writing and provide meaningful feedback using a rubric.

###
Generating Different Representations of Relationships

Given problems that include data, the student will generate different representations, such as a table, graph, equation, or verbal description.

###
Predicting, Finding, and Justifying Data from a Graph

Given data in the form of a graph, the student will use the graph to interpret solutions to problems.

###
Determining Slopes from Equations, Graphs, and Tables

Given algebraic, tabular, and graphical representations of linear functions, the student will determine the slope of the relationship from each of the representations.

###
Approximating the Value of Irrational Numbers

Given problem situations that include pictorial representations of irrational numbers, the student will find the approximate value of the irrational numbers.

###
Expressing Numbers in Scientific Notation

Given problem situations, the student will express numbers in scientific notation.

###
Drawing Conclusions about Three-Dimensional Figures from Nets

Given a net for a three-dimensional figure, the student will make conjectures and draw conclusions about the three-dimensional figure formed by the given net.

###
Determining if a Relationship is a Functional Relationship

The student is expected to gather and record data & use data sets to determine functional relationships between quantities.

###
Graphing Dilations, Reflections, and Translations

Given a coordinate plane, the student will graph dilations, reflections, and translations, and use those graphs to solve problems.

###
Graphing and Applying Coordinate Dilations

Given a coordinate plane or coordinate representations of a dilation, the student will graph dilations and use those graphs to solve problems.

###
Developing the Concept of Slope

Given multiple representations of linear functions, the student will develop the concept of slope as a rate of change.

###
Newton's Law of Inertia

This resource provides instructional resources for Newton's First Law, the law of inertia.

###
Newton's Law of Action-Reaction

This resource is to support TEKS (8)(6)(C), specifically the Newton's third law or the law of action-reaction.

###
Kinetic and Potential Energy

Given diagrams, illustrations or relevant data, students will identify examples of kinetic and potential energy and their transformations.

###
Work-Energy Theorem

Using diagrams, illustrations, and relevant data, students will calculate the net work done on an object, the change in an object's velocity, and the change in an object's kinetic energy.

###
Waves—Properties

Given diagrams, descriptions or illustrations, students will determine the properties of wave motion and wave propagation as they pass through different media.

###
Writing Geometric Relationships

Given information in a geometric context, students will be able to use informal arguments to establish facts about the angle sum and exterior angle of triangles, the angles created when parallel lines are cut by a transversal, and the angle-angle criterion for similarity of triangles.

###
Solutions of Simultaneous Equations

Given a graph of two simultaneous equations, students will be able to interpret the intersection of the graphs as the solution to the two equations.

###
Comparing and Explaining Transformations

Given rotations, reflections, translations, and dilations, students will be able to develop algebraic representations for rotations, and generalize and then compare and contrast the properties of congruence transformations and non-congruence transformations.

###
Mean Absolute Deviation

Given a set of data with no more than 10 data points, students will be able to determine and use the mean absolute deviation to describe the spread of the data.