Extended real number line

The extended real number line is obtained from the real number line R by adding two elements: +∞ and −∞ (which are not considered to be real numbers). It is useful in mathematical analysis, especially in integration theory. The extended real number line is denoted by R or [−∞,+∞].

The extended real number line turns into a totally ordered set by defining −∞ ≤ a ≤ +∞ for all a. This order has the nice property that every subset has a supremum and an infimum: it is a complete lattice. The total order induces a topology on R. In this topology, a set U is a neighborhood of +∞ if and only if it contains a set {x : xa} for some real number a, and analogously for the neighborhoods of −∞. R is a compact Hausdorff space homeomorphic to the unit interval [0,1].

The arithmetical operations of R can be partly extended to R as follows:

• a + ∞ = ∞ + a = ∞    if a ≠ −∞
• a − ∞ = −∞ + a = −∞    if a ≠ +∞
• a × +∞ = +∞ × a = +∞    if a > 0
• a × +∞ = +∞ × a = −∞    if a < 0
• a × −∞ = −∞ × a = −∞    if a > 0
• a × −∞ = −∞ × a = +∞    if a < 0
• a / ±∞ = 0    if −∞ < a < +∞
• ±∞ / a = ±∞    if 0 < a < +∞
• +∞ / a = −∞    if −∞ < a < 0
• −∞ / a = +∞    if −∞ < a < 0

The expressions ∞ − ∞, 0 × ±∞ and ±∞ / ±∞ are usually left undefined. Also, 1 / 0 is not defined as +∞ (because −∞ would be just as good a candidate). These rules are modeled on the laws for infinite limits.

Note that with these definitions, R is not a field and not even a ring. However, it still has several convenient properties:

• a + (b + c) and (a + b) + c are either equal or both undefined.
• a + b and b + a are either equal or both undefined.
• a × (b × c) and (a × b) × c are either equal or both undefined.
• a × b and b × a are either equal or both undefined
• a × (b + c) and (a × b) + (a × c) are equal if both are defined.
• if ab and if both a + c and b + c are defined, then a + cb + c.
• if ab and c > 0 and both a × c and b × c are defined, then a × cb × c.

In general, all laws of arithmetic are valid in R as long as all occurring expressions are defined.

By using the intuition of limits, several functions can be naturally extended to R. For instance, one defines exp(−∞) = 0, exp(+∞) = +∞, ln(0) = −∞, ln(+∞) = ∞ etc.zh:扩展的实数轴

Navigation

Academic Kids Menu

• Art and Cultures
• Art (http://www.academickids.com/encyclopedia/index.php/Art)
• Architecture (http://www.academickids.com/encyclopedia/index.php/Architecture)
• Cultures (http://www.academickids.com/encyclopedia/index.php/Cultures)
• Music (http://www.academickids.com/encyclopedia/index.php/Music)
• Musical Instruments (http://academickids.com/encyclopedia/index.php/List_of_musical_instruments)
• Biographies (http://www.academickids.com/encyclopedia/index.php/Biographies)
• Clipart (http://www.academickids.com/encyclopedia/index.php/Clipart)
• Geography (http://www.academickids.com/encyclopedia/index.php/Geography)
• Countries of the World (http://www.academickids.com/encyclopedia/index.php/Countries)
• Maps (http://www.academickids.com/encyclopedia/index.php/Maps)
• Flags (http://www.academickids.com/encyclopedia/index.php/Flags)
• Continents (http://www.academickids.com/encyclopedia/index.php/Continents)
• History (http://www.academickids.com/encyclopedia/index.php/History)
• Ancient Civilizations (http://www.academickids.com/encyclopedia/index.php/Ancient_Civilizations)
• Industrial Revolution (http://www.academickids.com/encyclopedia/index.php/Industrial_Revolution)
• Middle Ages (http://www.academickids.com/encyclopedia/index.php/Middle_Ages)
• Prehistory (http://www.academickids.com/encyclopedia/index.php/Prehistory)
• Renaissance (http://www.academickids.com/encyclopedia/index.php/Renaissance)
• Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
• United States (http://www.academickids.com/encyclopedia/index.php/United_States)
• Wars (http://www.academickids.com/encyclopedia/index.php/Wars)
• World History (http://www.academickids.com/encyclopedia/index.php/History_of_the_world)
• Human Body (http://www.academickids.com/encyclopedia/index.php/Human_Body)
• Mathematics (http://www.academickids.com/encyclopedia/index.php/Mathematics)
• Reference (http://www.academickids.com/encyclopedia/index.php/Reference)
• Science (http://www.academickids.com/encyclopedia/index.php/Science)
• Animals (http://www.academickids.com/encyclopedia/index.php/Animals)
• Aviation (http://www.academickids.com/encyclopedia/index.php/Aviation)
• Dinosaurs (http://www.academickids.com/encyclopedia/index.php/Dinosaurs)
• Earth (http://www.academickids.com/encyclopedia/index.php/Earth)
• Inventions (http://www.academickids.com/encyclopedia/index.php/Inventions)
• Physical Science (http://www.academickids.com/encyclopedia/index.php/Physical_Science)
• Plants (http://www.academickids.com/encyclopedia/index.php/Plants)
• Scientists (http://www.academickids.com/encyclopedia/index.php/Scientists)
• Social Studies (http://www.academickids.com/encyclopedia/index.php/Social_Studies)
• Anthropology (http://www.academickids.com/encyclopedia/index.php/Anthropology)
• Economics (http://www.academickids.com/encyclopedia/index.php/Economics)
• Government (http://www.academickids.com/encyclopedia/index.php/Government)
• Religion (http://www.academickids.com/encyclopedia/index.php/Religion)
• Holidays (http://www.academickids.com/encyclopedia/index.php/Holidays)
• Space and Astronomy
• Solar System (http://www.academickids.com/encyclopedia/index.php/Solar_System)
• Planets (http://www.academickids.com/encyclopedia/index.php/Planets)
• Sports (http://www.academickids.com/encyclopedia/index.php/Sports)
• Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
• Weather (http://www.academickids.com/encyclopedia/index.php/Weather)
• US States (http://www.academickids.com/encyclopedia/index.php/US_States)

Information

• Home Page (http://academickids.com/encyclopedia/index.php)
• Contact Us (http://www.academickids.com/encyclopedia/index.php/Contactus)

• Clip Art (http://classroomclipart.com)