Logarithmic derivative

From Academic Kids

(Redirected from Log-derivative)

In mathematics, specifically in calculus and complex analysis, the logarithmic derivative of a function f is defined by the formula


where f′ is the derivative of f. When f is a function f(x) of a real variable x, and takes real, strictly positive values, this is indeed the formula for (log f)′, that is, the derivative of the natural logarithm of f, as follows from the chain rule.



Some basic calculus applications of the formula

(ln(uv))′ = (uv)′/(uv) = (u′)/u + (v′)/v

that expresses the way the logarithmic derivative of a product is the sum of the logarithmic derivatives of the factors.

One consequence is the conventional Leibniz rule

(uv)′ = uv + uv

which follows by clearing denominators.

Another is the quotient rule:

(ln(u/v))′ = (u′)/u − (v′)/v
= (u′/v)/(u/v) − (uv′/v2)/(u/v)
= (u′/v − uv′/v2)/(u/v)
= ((u′v − uv′)/v2)/(u/v)
= (u/v)′/(u/v)
so (u/v)′ = (u′v − uv′)/v2.

Integrating factors

The logarithmic derivative idea is closely connected to the integrating factor method, for first order differential equations. In operator terms, write

D = d/dx

and let M denote the operator of multiplication by some given function G(x). Then


can be written (by the product rule) as

D + M*

where M* now denotes the multiplication operator by the logarithmic derivative


In practice we are given an operator such as

D + F = L

and wish to solve equations

L(h) = f

for the function h, given f. This then reduces to solving

G′/G = F

which has as solution


with any indefinite integral of F.

Complex analysis

The formula as given can be applied more widely; for example if f(z) is a meromorphic function, it makes sense at all complex values of z at which f has neither a zero nor a pole. Further, at a zero or a pole the logarithmic derivative behaves in a way that is easily analysed in terms of the particular case


with n an integer, n≠0. The logarithmic derivative is then


and one can draw the general conclusion that for f meromorphic, the singularities of the logarithmic derivative of f are all simple poles, with residue n from a zero of order n, residue −n from a pole of order n. See argument principle. This information is often exploited in contour integration.

The multiplicative group

Behind the use of the logarithmic derivative lie two basic facts about GL1, that is, the multiplicative group of real numbers or other field. The differential operator


is invariant under 'translation' (replacing X by aX for a constant). And the differential form


is likewise invariant. For functions F into GL1, the formula


is therefore a pullback of the invariant form.de:Logarithmische Ableitung it:Derivata logaritmica


Academic Kids Menu

  • Art and Cultures
    • Art (http://www.academickids.com/encyclopedia/index.php/Art)
    • Architecture (http://www.academickids.com/encyclopedia/index.php/Architecture)
    • Cultures (http://www.academickids.com/encyclopedia/index.php/Cultures)
    • Music (http://www.academickids.com/encyclopedia/index.php/Music)
    • Musical Instruments (http://academickids.com/encyclopedia/index.php/List_of_musical_instruments)
  • Biographies (http://www.academickids.com/encyclopedia/index.php/Biographies)
  • Clipart (http://www.academickids.com/encyclopedia/index.php/Clipart)
  • Geography (http://www.academickids.com/encyclopedia/index.php/Geography)
    • Countries of the World (http://www.academickids.com/encyclopedia/index.php/Countries)
    • Maps (http://www.academickids.com/encyclopedia/index.php/Maps)
    • Flags (http://www.academickids.com/encyclopedia/index.php/Flags)
    • Continents (http://www.academickids.com/encyclopedia/index.php/Continents)
  • History (http://www.academickids.com/encyclopedia/index.php/History)
    • Ancient Civilizations (http://www.academickids.com/encyclopedia/index.php/Ancient_Civilizations)
    • Industrial Revolution (http://www.academickids.com/encyclopedia/index.php/Industrial_Revolution)
    • Middle Ages (http://www.academickids.com/encyclopedia/index.php/Middle_Ages)
    • Prehistory (http://www.academickids.com/encyclopedia/index.php/Prehistory)
    • Renaissance (http://www.academickids.com/encyclopedia/index.php/Renaissance)
    • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
    • United States (http://www.academickids.com/encyclopedia/index.php/United_States)
    • Wars (http://www.academickids.com/encyclopedia/index.php/Wars)
    • World History (http://www.academickids.com/encyclopedia/index.php/History_of_the_world)
  • Human Body (http://www.academickids.com/encyclopedia/index.php/Human_Body)
  • Mathematics (http://www.academickids.com/encyclopedia/index.php/Mathematics)
  • Reference (http://www.academickids.com/encyclopedia/index.php/Reference)
  • Science (http://www.academickids.com/encyclopedia/index.php/Science)
    • Animals (http://www.academickids.com/encyclopedia/index.php/Animals)
    • Aviation (http://www.academickids.com/encyclopedia/index.php/Aviation)
    • Dinosaurs (http://www.academickids.com/encyclopedia/index.php/Dinosaurs)
    • Earth (http://www.academickids.com/encyclopedia/index.php/Earth)
    • Inventions (http://www.academickids.com/encyclopedia/index.php/Inventions)
    • Physical Science (http://www.academickids.com/encyclopedia/index.php/Physical_Science)
    • Plants (http://www.academickids.com/encyclopedia/index.php/Plants)
    • Scientists (http://www.academickids.com/encyclopedia/index.php/Scientists)
  • Social Studies (http://www.academickids.com/encyclopedia/index.php/Social_Studies)
    • Anthropology (http://www.academickids.com/encyclopedia/index.php/Anthropology)
    • Economics (http://www.academickids.com/encyclopedia/index.php/Economics)
    • Government (http://www.academickids.com/encyclopedia/index.php/Government)
    • Religion (http://www.academickids.com/encyclopedia/index.php/Religion)
    • Holidays (http://www.academickids.com/encyclopedia/index.php/Holidays)
  • Space and Astronomy
    • Solar System (http://www.academickids.com/encyclopedia/index.php/Solar_System)
    • Planets (http://www.academickids.com/encyclopedia/index.php/Planets)
  • Sports (http://www.academickids.com/encyclopedia/index.php/Sports)
  • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
  • Weather (http://www.academickids.com/encyclopedia/index.php/Weather)
  • US States (http://www.academickids.com/encyclopedia/index.php/US_States)


  • Home Page (http://academickids.com/encyclopedia/index.php)
  • Contact Us (http://www.academickids.com/encyclopedia/index.php/Contactus)

  • Clip Art (http://classroomclipart.com)
Personal tools