Uniform continuity

From Academic Kids

(Redirected from Uniformly continuous)

In mathematical analysis, a function f(x) is called uniformly continuous if, roughly speaking, small changes in the input x effect small changes in the output f(x) ("continuity"), and furthermore the size of the changes in f(x) depends only on the size of the changes in x but not on x itself ("uniformity").

Continuity itself is a local property of a function—that is, a function f is continuous, or not, at a particular point, and when we speak of a function being continuous on an interval, we mean only that it is continuous at each point of the interval. In contrast, uniform continuity is a global property of a function. A function is uniformly continuous, or not, on an entire interval, and may be continuous at each point of an interval without being uniformly continuous on the entire interval.



A function f : M → N between metric spaces is called uniformly continuous if for every real number ε > 0 there exists a number δ > 0 such that for all x1, x2 in M with d(x1, x2) < δ, we have d(f(x1), f(x2)) < ε.


Every uniformly continuous function is continuous, but the converse is not true. Consider for instance the function f(x) = 1/x with domain the positive real numbers. This function is continuous, but not uniformly continuous, since as x approaches 0, the changes in f(x) grow beyond any bound.

If M is a compact metric space, then every continuous f : M → N is uniformly continuous (this is the Heine-Cantor theorem). In particular, if a function is continuous at every point of a closed interval, it is uniformly continuous on that interval.

Every Lipschitz continuous map between two metric spaces is uniformly continuous.

If (xn) is a Cauchy sequence and f is a uniformly continuous function, then (f(xn)) is also a Cauchy sequence.

Generalization to uniform spaces

The most natural and general setting for the study of uniform continuity are the uniform spaces. A function f : X → Y between uniform space is called uniformly continuous if for every entourage V in Y there exists an entourage U in X such that for every (x1, x2) in U we have (f(x1), f(x2)) in V.

In this setting, it is also true that uniformly continuous maps transform Cauchy sequences into Cauchy sequences and that continuous maps on compact uniform spaces are automatically uniformly continuous.


The function

<math>f(x) = \sin\left({1\over x}\right),<math>

which is continuous at every point of the interval (0, 1), is not uniformly continuous on this interval. This is because f oscillates from −1 to 1 infinitely many times in the interval (0, δ) for any δ, no matter how small, and therefore no choice of δ can bound the variation in f to less than 2.de:Lipschitz-Stetigkeit es:Lipschitz continua fr:Application lipschitzienne pl:funkcja jednostajnie ciągła ru:Равномерная непрерывность


Academic Kids Menu

  • Art and Cultures
    • Art (http://www.academickids.com/encyclopedia/index.php/Art)
    • Architecture (http://www.academickids.com/encyclopedia/index.php/Architecture)
    • Cultures (http://www.academickids.com/encyclopedia/index.php/Cultures)
    • Music (http://www.academickids.com/encyclopedia/index.php/Music)
    • Musical Instruments (http://academickids.com/encyclopedia/index.php/List_of_musical_instruments)
  • Biographies (http://www.academickids.com/encyclopedia/index.php/Biographies)
  • Clipart (http://www.academickids.com/encyclopedia/index.php/Clipart)
  • Geography (http://www.academickids.com/encyclopedia/index.php/Geography)
    • Countries of the World (http://www.academickids.com/encyclopedia/index.php/Countries)
    • Maps (http://www.academickids.com/encyclopedia/index.php/Maps)
    • Flags (http://www.academickids.com/encyclopedia/index.php/Flags)
    • Continents (http://www.academickids.com/encyclopedia/index.php/Continents)
  • History (http://www.academickids.com/encyclopedia/index.php/History)
    • Ancient Civilizations (http://www.academickids.com/encyclopedia/index.php/Ancient_Civilizations)
    • Industrial Revolution (http://www.academickids.com/encyclopedia/index.php/Industrial_Revolution)
    • Middle Ages (http://www.academickids.com/encyclopedia/index.php/Middle_Ages)
    • Prehistory (http://www.academickids.com/encyclopedia/index.php/Prehistory)
    • Renaissance (http://www.academickids.com/encyclopedia/index.php/Renaissance)
    • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
    • United States (http://www.academickids.com/encyclopedia/index.php/United_States)
    • Wars (http://www.academickids.com/encyclopedia/index.php/Wars)
    • World History (http://www.academickids.com/encyclopedia/index.php/History_of_the_world)
  • Human Body (http://www.academickids.com/encyclopedia/index.php/Human_Body)
  • Mathematics (http://www.academickids.com/encyclopedia/index.php/Mathematics)
  • Reference (http://www.academickids.com/encyclopedia/index.php/Reference)
  • Science (http://www.academickids.com/encyclopedia/index.php/Science)
    • Animals (http://www.academickids.com/encyclopedia/index.php/Animals)
    • Aviation (http://www.academickids.com/encyclopedia/index.php/Aviation)
    • Dinosaurs (http://www.academickids.com/encyclopedia/index.php/Dinosaurs)
    • Earth (http://www.academickids.com/encyclopedia/index.php/Earth)
    • Inventions (http://www.academickids.com/encyclopedia/index.php/Inventions)
    • Physical Science (http://www.academickids.com/encyclopedia/index.php/Physical_Science)
    • Plants (http://www.academickids.com/encyclopedia/index.php/Plants)
    • Scientists (http://www.academickids.com/encyclopedia/index.php/Scientists)
  • Social Studies (http://www.academickids.com/encyclopedia/index.php/Social_Studies)
    • Anthropology (http://www.academickids.com/encyclopedia/index.php/Anthropology)
    • Economics (http://www.academickids.com/encyclopedia/index.php/Economics)
    • Government (http://www.academickids.com/encyclopedia/index.php/Government)
    • Religion (http://www.academickids.com/encyclopedia/index.php/Religion)
    • Holidays (http://www.academickids.com/encyclopedia/index.php/Holidays)
  • Space and Astronomy
    • Solar System (http://www.academickids.com/encyclopedia/index.php/Solar_System)
    • Planets (http://www.academickids.com/encyclopedia/index.php/Planets)
  • Sports (http://www.academickids.com/encyclopedia/index.php/Sports)
  • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
  • Weather (http://www.academickids.com/encyclopedia/index.php/Weather)
  • US States (http://www.academickids.com/encyclopedia/index.php/US_States)


  • Home Page (http://academickids.com/encyclopedia/index.php)
  • Contact Us (http://www.academickids.com/encyclopedia/index.php/Contactus)

  • Clip Art (http://classroomclipart.com)
Personal tools